On the rationality problem for hypersurfaces

verfasst von
Jan Lange, Stefan Schreieder
Abstract

We show that a very general hypersurface of degree d at least 4 and dimension at most $(d+1)2^{d-4}$ over a field of characteristic different from 2 does not admit a decomposition of the diagonal; hence, it is neither stably nor retract rational, nor $\mathbb{A}^1$-connected. Similar results hold in characteristic 2 under a slightly weaker degree bound. This improves earlier results by the second named author and Moe.

Organisationseinheit(en)
Institut für Algebraische Geometrie
Typ
Preprint
Publikationsdatum
19.09.2024
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)