Online Optimization of Curriculum Learning Schedules using Evolutionary Optimization
- verfasst von
- Mohit Jiwatode, Leon Schlecht, Alexander Dockhorn
- Abstract
We propose RHEA CL, which combines Curriculum Learning (CL) with Rolling Horizon Evolutionary Algorithms (RHEA) to automatically produce effective curricula during the training of a reinforcement learning agent. RHEA CL optimizes a population of curricula, using an evolutionary algorithm, and selects the best-performing curriculum as the starting point for the next training epoch. Performance evaluations are conducted after every curriculum step in all environments. We evaluate the algorithm on the DoorKey and DynamicObstacles environments within the Minigrid framework. It demonstrates adaptability and consistent improvement, particularly in the early stages, while reaching a stable performance later that is capable of outperforming other curriculum learners. In comparison to other curriculum schedules, RHEA CL has shown to yield performance improvements for the final Reinforcement learning (RL) agent at the cost of additional evaluation during training.
- Organisationseinheit(en)
-
Institut für Informationsverarbeitung
- Typ
- Aufsatz in Konferenzband
- Publikationsdatum
- 05.08.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Artificial intelligence, Computergrafik und computergestütztes Design, Maschinelles Sehen und Mustererkennung, Mensch-Maschine-Interaktion, Software
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2408.06068 (Zugang:
Offen)
https://doi.org/10.1109/CoG60054.2024.10645570 (Zugang: Geschlossen)