Cartan invariants of symmetric groups and Iwahori-Hecke algebras

verfasst von
Christine Bessenrodt, David Hill
Abstract

Külshammer, Olsson and Robinson conjectured that a certain set of numbers determined the invariant factors of the ℓ-Cartan matrix for S n (equivalently, the invariant factors of the Cartan matrix for the Iwahori-Hecke algebra ℋn(q), where q is a primitive ℓth root of unity). We call these invariant factors Cartan invariants. In a previous paper, the second author calculated these Cartan invariants when ℓ=p r, p is prime and r≤p, and went on to conjecture that the formulae should hold for all r. Another result was obtained, which is surprising and counterintuitive from a block theoretic point of view. Namely, given the prime decomposition ℓ=p1r1ri ⋯ pkrk, the Cartan matrix of an ℓ-block of Sn is a product of Cartan matrices associated to pi-blocks of Sn. In particular, the invariant factors of the Cartan matrix associated to an ℓ-block of Sn can be recovered from the Cartan matrices associated to the p1r1 ri-blocks. In this paper, we formulate an explicit combinatorial determination of the Cartan invariants of Sn, not only for the full Cartan matrix, but also for an individual block. We collect evidence for this conjecture by showing that the formulae predict the correct determinant of the ℓ-Cartan matrix. We then go on to show that Hill's conjecture implies the conjecture of Külshammer, Olsson and Robinson.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
University of California at Berkeley
Typ
Artikel
Journal
Journal of the London Mathematical Society
Band
81
Seiten
113-128
Anzahl der Seiten
16
ISSN
0024-6107
Publikationsdatum
23.11.2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Elektronische Version(en)
https://arxiv.org/abs/0809.4457 (Zugang: Offen)
https://doi.org/10.1112/jlms/jdp060 (Zugang: Geschlossen)