A 2-block splitting in alternating groups
- verfasst von
- Christine Bessenrodt
- Abstract
In 1956, Brauer showed that there is a partitioning of the p-regular conjugacy classes of a group according to the p-blocks of its irreducible characters with close connections to the block theoretical invariants. In a previous paper, the first explicit block splitting of regular classes for a family of groups was given for the 2-regular classes of the symmetric groups. Based on this work, the corresponding splitting problem is investigated here for the 2-regular classes of the alternating groups. As an application, an easy combinatorial formula for the elementary divisors of the Cartan matrix of the alternating groups at p = 2 is deduced.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Algebra and Number Theory
- Band
- 3
- Seiten
- 835-846
- Anzahl der Seiten
- 12
- ISSN
- 1937-0652
- Publikationsdatum
- 29.11.2009
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.2140/ant.2009.3.835 (Zugang:
Geschlossen)