A 2-block splitting in alternating groups

verfasst von
Christine Bessenrodt
Abstract

In 1956, Brauer showed that there is a partitioning of the p-regular conjugacy classes of a group according to the p-blocks of its irreducible characters with close connections to the block theoretical invariants. In a previous paper, the first explicit block splitting of regular classes for a family of groups was given for the 2-regular classes of the symmetric groups. Based on this work, the corresponding splitting problem is investigated here for the 2-regular classes of the alternating groups. As an application, an easy combinatorial formula for the elementary divisors of the Cartan matrix of the alternating groups at p = 2 is deduced.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Algebra and Number Theory
Band
3
Seiten
835-846
Anzahl der Seiten
12
ISSN
1937-0652
Publikationsdatum
29.11.2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.2140/ant.2009.3.835 (Zugang: Geschlossen)