Finite-time blow-up in fully parabolic quasilinear Keller–Segel systems with supercritical exponents

verfasst von
Xinru Cao, Mario Fuest
Abstract

We examine the possibility of finite-time blow-up of solutions to the fully parabolic quasilinear Keller–Segel model (Figure presented.) in a ball Ω⊂Rn with n≥2. Previous results show that unbounded solutions exist for all m,q∈R with m-q<n-2n, which, however, are necessarily global in time if q≤0. It is expected that finite-time blow-up is possible whenever q>0 but in the fully parabolic setting this has so far only been shown when max{m,q}≥1. In the present paper, we substantially extend these findings. Our main results for the two- and three-dimensional settings state that (⋆) admits solutions blowing up in finite time if (Formula presented.) that is, also for certain m, q with max{m,q}<1. As a key new ingredient in our proof, we make use of (singular) pointwise upper estimates for u.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Donghua University
Typ
Artikel
Journal
Calculus of Variations and Partial Differential Equations
Band
64
ISSN
0944-2669
Publikationsdatum
17.02.2025
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00526-025-02944-4 (Zugang: Offen)