The general recurrence relation for divided differences and the general Newton-interpolation-algorithm with applications to trigonometric interpolation

verfasst von
G. Mühlbach
Abstract

In this note an ultimate generalization of Newton's classical interpolation formula is given. More precisely, we will establish the most general linear form of a Newton-like interpolation formula and a general recurrence relation for divided differences which are applicable whenever a function is to be interpolated by means of linear combinations of functions forming a Čebyšev-system such that at least one of its subsystems is again a Čebyšev-system. The theory is applied to trigonometric interpolation yielding a new algorithm which computes the interpolating trigonometric polynomial of smallest degree for any distribution of the knots by recurrence. A numerical example is given.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Typ
Artikel
Journal
Numerische Mathematik
Band
32
Seiten
393-408
Anzahl der Seiten
16
ISSN
0029-599X
Publikationsdatum
12.1979
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/BF01401043 (Zugang: Geschlossen)