Complex powers of elliptic pseudodifferential operators

verfasst von
Elmar Schrohe
Abstract

The aim of this paper is the construction of complex powers of elliptic pseudodifferential operators and the study of the analytic properties of the corresponding kernels kS (x,y). For x=y, the case of principal interest, the domain of holomorphy and the singularities of kS (x,x) are shown to depend on the asymptotic expansion of the symbol. For classical symbols, kS (x,x) is known to be meromorphic on ℂ with simple poles in a set of equidistant points on the real axis. In the more general cases considered here, the singularities may be distributed over a half plane and kS (x,x) can not always be extended to 337-2. An example is given where kS (x,x) has a vertical line as natural boundary.

Externe Organisation(en)
Johannes Gutenberg-Universität Mainz
Typ
Artikel
Journal
Integral Equations and Operator Theory
Band
9
Seiten
337-354
Anzahl der Seiten
18
ISSN
0378-620X
Publikationsdatum
05.1986
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.1007/BF01199350 (Zugang: Geschlossen)