Global bifurcation of positive equilibria in nonlinear population models
- verfasst von
- Christoph Walker
- Abstract
Existence of nontrivial nonnegative equilibrium solutions for age-structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.
- Organisationseinheit(en)
-
Institut für Angewandte Mathematik
- Typ
- Artikel
- Journal
- Journal of differential equations
- Band
- 248
- Seiten
- 1756-1776
- Anzahl der Seiten
- 21
- ISSN
- 0022-0396
- Publikationsdatum
- 01.04.2010
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1016/j.jde.2009.11.028 (Zugang:
Offen)