Swarming to rank for information retrieval

verfasst von
Ernesto Diaz-Aviles, Wolfgang Nejdl, Lars Schmidt-Thieme
Abstract

This paper presents an approach to automatically optimize the retrieval quality of ranking functions. Taking a Swarm Intelligence perspective, we present a novel method, Swarm-Rank, which is well-founded in a Particle Swarm Optimization framework. SwarmRank learns a ranking function by optimizing the combination of various types of evidences such content and hyperlink features, while directly maximizing Mean Average Precision, a widely used evaluation measure in Information Retrieval. Experimental results on well-established Learning To Rank benchmark datasets show that our approach significantly outperformed standard approaches (i.e., BM25) that only use basic statistical information derived from documents collections, and is found to be competitive with Ranking SVM and RankBoost in the task of ranking relevant documents at the very top positions.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Stiftung Universität Hildesheim
Typ
Aufsatz in Konferenzband
Seiten
9-15
Anzahl der Seiten
7
Publikationsdatum
08.07.2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik und Mathematik, Theoretische Informatik
Elektronische Version(en)
https://doi.org/10.1145/1569901.1569904 (Zugang: Geschlossen)