Swarming to rank for information retrieval
- verfasst von
- Ernesto Diaz-Aviles, Wolfgang Nejdl, Lars Schmidt-Thieme
- Abstract
This paper presents an approach to automatically optimize the retrieval quality of ranking functions. Taking a Swarm Intelligence perspective, we present a novel method, Swarm-Rank, which is well-founded in a Particle Swarm Optimization framework. SwarmRank learns a ranking function by optimizing the combination of various types of evidences such content and hyperlink features, while directly maximizing Mean Average Precision, a widely used evaluation measure in Information Retrieval. Experimental results on well-established Learning To Rank benchmark datasets show that our approach significantly outperformed standard approaches (i.e., BM25) that only use basic statistical information derived from documents collections, and is found to be competitive with Ranking SVM and RankBoost in the task of ranking relevant documents at the very top positions.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Stiftung Universität Hildesheim
- Typ
- Aufsatz in Konferenzband
- Seiten
- 9-15
- Anzahl der Seiten
- 7
- Publikationsdatum
- 08.07.2009
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Theoretische Informatik und Mathematik, Theoretische Informatik
- Elektronische Version(en)
-
https://doi.org/10.1145/1569901.1569904 (Zugang:
Geschlossen)