Posets isomorphic to their extensions

verfasst von
Marcel Erné
Abstract

A standard extension for a poset P is a system Q of lower ends ('descending subsets') of P containing all principal ideals of P. An isomorphism φ{symbol} between P and Q is called recycling if ∪φ{symbol}[Y]∈Q for all Y∈Q. The existence of such an isomorphism has rather restrictive consequences for the system Q in question. For example, if Q contains all lower ends generated by chains then a recycling isomorphism between P and Q forces Q to be precisely the system of all principal ideals. For certain standard extensions Q, it turns out that every isomorphism between P and Q (if there is any) must be recycling. Our results include the well-known fact that a poset cannot be isomorphic to the system of all lower ends, as well as the fact that a poset is isomorphic to the system of all ideals (i.e., directed lower ends) only if every ideal is principal.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
ORDER
Band
2
Seiten
199-210
Anzahl der Seiten
12
ISSN
0167-8094
Publikationsdatum
06.1985
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie, Geometrie und Topologie, Theoretische Informatik und Mathematik
Elektronische Version(en)
https://doi.org/10.1007/BF00334857 (Zugang: Geschlossen)