Posets isomorphic to their extensions
- verfasst von
- Marcel Erné
- Abstract
A standard extension for a poset P is a system Q of lower ends ('descending subsets') of P containing all principal ideals of P. An isomorphism φ{symbol} between P and Q is called recycling if ∪φ{symbol}[Y]∈Q for all Y∈Q. The existence of such an isomorphism has rather restrictive consequences for the system Q in question. For example, if Q contains all lower ends generated by chains then a recycling isomorphism between P and Q forces Q to be precisely the system of all principal ideals. For certain standard extensions Q, it turns out that every isomorphism between P and Q (if there is any) must be recycling. Our results include the well-known fact that a poset cannot be isomorphic to the system of all lower ends, as well as the fact that a poset is isomorphic to the system of all ideals (i.e., directed lower ends) only if every ideal is principal.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- ORDER
- Band
- 2
- Seiten
- 199-210
- Anzahl der Seiten
- 12
- ISSN
- 0167-8094
- Publikationsdatum
- 06.1985
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie, Geometrie und Topologie, Theoretische Informatik und Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1007/BF00334857 (Zugang:
Geschlossen)