FeMoO4 revisited: Crosslike 90° noncollinear antiferromagnetic structure caused by dzyaloshinskii-moriya interaction
- verfasst von
- V. Ksenofontov, Yu G. Pashkevich, M. Panthöfer, V. Gnezdilov, R. Babkin, R. Klauer, P. Lemmens, A. Möller
- Abstract
The ground state of Fe2+ (S = 2) in α- and β-FeMoO4 is investigated by experiments including X-ray diffraction, Raman scattering, and 57Fe-Mössbauer spectroscopy below 300 K and evaluated by theoretical modeling. Both modifications crystallize in the space group C2/m with the same set of Wyckoff positions. The structural feature of α- and β-FeMoO4 is a tetramer of the so-called butterfly motif. Two iron-sites (Fe2) form an antiferromagnetically coupled dimer whereas two Fe1 establish an antiferromagnetic intertetramer coupling. The effective magnetic exchange of the two magnetic sublattices is based on dominating Dzyaloshinskii-Moriya interaction due to the rare situation of canceling Heisenberg exchange interactions. According to our investigations, the ground states of the two polymorphs differ in terms of their Fe-site specific electric field gradients Vii. Contrary to the α-phase, a degenerate set of Vzz and Vyy for both iron sites in β-FeMoO4 is extracted from density functional theory calculations. In the vicinity of the phase transition (β → α), the degeneracy of the β-phase is lifted. Correspondingly, we observe a softening of the ν(Mo-O) phonon modes. Detailed Mössbauer spectra confirm the crosslike 90° antiferromagnetic structure for both modifications and solve the origin of the longstanding issue of disparate quadrupole splittings in α- and β-FeMoO4
- Externe Organisation(en)
-
Johannes Gutenberg-Universität Mainz
National Academy of Sciences in Ukraine
Technische Universität Braunschweig
B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
- Typ
- Artikel
- Journal
- Journal of Physical Chemistry C
- Band
- 125
- Seiten
- 5947-5956
- Anzahl der Seiten
- 10
- ISSN
- 1932-7447
- Publikationsdatum
- 18.03.2021
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Elektronische, optische und magnetische Materialien, Allgemeine Energie, Physikalische und Theoretische Chemie, Oberflächen, Beschichtungen und Folien
- Elektronische Version(en)
-
https://doi.org/10.1021/acs.jpcc.1c01134 (Zugang:
Geschlossen)