Standard completions for quasiordered sets

verfasst von
Marcel Erné, Gerhard Wilke
Abstract

A standard completion for a quasiordered set Q is a closure system whose point closures are the principal ideals of Q. We characterize the following types of standard completions by means of their closure operators: (i) V-distributive completions, (ii) Completely distributive completions, (iii) A-completions (i.e. standard completions which are completely distributive algebraic lattices), (iv) Boolean completions. Moreover, completely distributive completions are described by certain idempotent relations, and the A-completions are shown to be in one-to-one correspondence with the join-dense subsets of Q. If a pseudocomplemented meet-semilattice Q has a Boolean completion C{black-letter}, then Q must be a Boolean lattice and C{black-letter} its MacNeille completion.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
SEMIGROUP FORUM
Band
27
Seiten
351-376
Anzahl der Seiten
26
ISSN
0037-1912
Publikationsdatum
12.1983
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.1007/BF02572747 (Zugang: Geschlossen)