Virtual Sensor of Li-Ion Batteries in Electric Vehicles Using Data-Driven Analytic Thermal Solutions

verfasst von
Wei Guo Foo, Rufan Yang, Franz Erich Wolter, Hung Dinh Nguyen
Abstract

Lithium-ion batteries, especially for electric vehicles (EVs), present safety risks, suffer poor performances, and undergo rapid degradation when operating under high temperatures. This, therefore, necessitates thermal monitoring for timely intervention. However, computations for this purpose can be very expensive and difficult to implement in real time. To overcome this problem, we establish a framework based on closed-form solutions to heat equations to estimate important parameters based on measurement data. They will be used for deducing heat generation rates for constructing forward-monitoring models for estimation. Our results show that the root-mean-square error between the estimated and actual temperature is at most 0.23 for sensor input interval between 50 and 60 s over the monitoring time of 1200 s, both with and without varying input currents. In addition, our proposed method achieves computations circa 350 times faster than that of finite element methods.

Organisationseinheit(en)
Fakultät für Elektrotechnik und Informatik
Externe Organisation(en)
Nanyang Technological University (NTU)
Typ
Artikel
Journal
IEEE Transactions on Industrial Electronics
Band
71
Seiten
5844-5852
Anzahl der Seiten
9
ISSN
0278-0046
Publikationsdatum
06.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1109/TIE.2023.3292868 (Zugang: Geschlossen)