Advancing laser transmission welding for additive manufacturing

A study of glass fiber reinforced polypropylene parts

verfasst von
Julian Kuklik, Matthias Henzler, Richard Staehr, Peter Jaeschke, Stefan Kaierle, Ludger Overmeyer
Abstract

Laser transmission welding (LTW) is a well-established technique for joining high-volume thermoplastic parts, such as automotive injection molded parts. For low-volume, prototype, and custom production, additive manufacturing is an emerging technology for producing complex thermoplastic parts. When compared to injection molding, the additive manufacturing process fused filament fabrication (FFF) results in an inhomogeneous structure with entrapped air within the volume. Additionally, the presence of short glass fibers in the polymer matrix leads to higher radiation scattering during the welding process. This paper presents a fundamental study of the weldability of additively manufactured fiber-reinforced parts. The specimens were fabricated using a FFF process with glass fiber-reinforced polypropylene (GF-PP). The study investigates the influence of layer thickness and line width of the FFF process on the optical transmittance. LTW-experiments were conducted using additively manufactured uncolored and black GF-PP samples. Lap shear test specimens were welded with a different energy per unit length. This research presents a process for welding additively manufactured GF-PP parts that can be used with optimized FFF-parameters to produce high-strength and durable prototypes or spare parts for the automotive industry. This research provides valuable insights into the process parameters and considerations required to achieve robust welds in additively manufactured thermoplastic parts, facilitating broader adoption of LTW in additive manufacturing contexts.

Organisationseinheit(en)
Institut für Transport- und Automatisierungstechnik
Externe Organisation(en)
Laser Zentrum Hannover e.V. (LZH)
Institut für integrierte Produktion Hannover (IPH) gGmbH
Typ
Artikel
Journal
Journal of laser applications
Band
36
Anzahl der Seiten
6
ISSN
1042-346X
Publikationsdatum
11.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Atom- und Molekularphysik sowie Optik, Biomedizintechnik, Instrumentierung
Elektronische Version(en)
https://doi.org/10.2351/7.0001625 (Zugang: Geschlossen)