Einbettung gewisser Kettengeometrien in projektive Räume
- verfasst von
- Herbert Hotje
- Abstract
The theory of "chain geometries" as represented in [2] is a generalisation of the concept of Möbius-, Laguerre- and pseudo-euclidean planes over a commutative field K. It is well known that these geometries can be represented as a 2-dimensional variety of the 3-dimensional projective space over K. It will be shown how to embed in a similar way a class of "chain geometries", which covers these planes. The algebras belonging to these geometries are the kinematic algebras, studied by H.KARZEL, in which x2∃ Kx+K for each element x of the algebra. If the algebra is of rank n the geometry will be represented on a n-dimensional algebraic variety of the (n+1)-dimensional projective space π, the chains being the intersection of with planes of π having no line but at least two points in common with.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Journal of Geometry
- Band
- 5
- Seiten
- 85-94
- Anzahl der Seiten
- 10
- ISSN
- 0047-2468
- Publikationsdatum
- 03.1974
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Geometrie und Topologie
- Elektronische Version(en)
-
https://doi.org/10.1007/BF01954538 (Zugang:
Geschlossen)