High-flux source system for matter-wave interferometry exploiting tunable interactions

verfasst von
A. Herbst, T. Estrampes, H. Albers, V. Vollenkemper, K. Stolzenberg, S. Bode, E. Charron, E. M. Rasel, N. Gaaloul, D. Schlippert
Abstract

Atom interferometers allow determining inertial effects to high accuracy. Quantum-projection noise as well as systematic effects impose demands on large atomic flux as well as ultralow expansion rates. Here we report on a high-flux source of ultracold atoms with free expansion rates near the Heisenberg limit directly upon release from the trap. Our results are achieved in a time-averaged optical dipole trap and enabled through dynamic tuning of the atomic scattering length across two orders of magnitude interaction strength via magnetic Feshbach resonances. We demonstrate Bose-Einstein condensates with more than 6×104 particles after evaporative cooling for 170 ms and their subsequent release with a minimal expansion energy of 4.5 nK in one direction. Based on our results we estimate the performance of an atom interferometer and compare our source system to a high performance chip trap, as readily available for ultraprecise measurements in microgravity environments.

Organisationseinheit(en)
SFB 1227: Designte Quantenzustände der Materie (DQ-mat)
Institut für Quantenoptik
Quantum Sensing
Guided Matter Wave Interferometry
Laboratorium für Nano- und Quantenengineering
QUEST Leibniz Forschungsschule
QuantumFrontiers
Externe Organisation(en)
Universität Paris-Saclay
Typ
Artikel
Journal
Physical Review Research
Band
6
ISSN
2643-1564
Publikationsdatum
02.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1103/physrevresearch.6.013139 (Zugang: Offen)