An algorithmic approach to Hermite-Birkhoff-interpolation

verfasst von
G. Mühlbach
Abstract

This paper deals with an algorithmic approach to the Hermite-Birkhoff-(HB)interpolation problem. More precisely, we will show that Newton's classical formula for interpolation by algebraic polynomials naturally extends to HB-interpolation. Hence almost all reasons which make Newton's method superior to just solving the system of linear equations associated with the interpolation problem may be repeated. Let us emphasize just two: Newton's formula being a biorthogonal expansion has a well known permanence property when the system of interpolation conditions grows. From Newton's formula by an elementary argument due to Cauchy an important representation of the interpolation error can be derived. All of the above extends to HB-interpolation with respect to canonical complete Čebyšev-systems and naturally associated differential operators [7]. A numerical example is given.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Typ
Artikel
Journal
Numerische Mathematik
Band
37
Seiten
339-347
Anzahl der Seiten
9
ISSN
0029-599X
Publikationsdatum
10.1981
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/BF01400313 (Zugang: Geschlossen)