Effective Context Selection in LLM-Based Leaderboard Generation
An Empirical Study
- verfasst von
- Salomon Kabongo, Jennifer D’Souza, Sören Auer
- Abstract
This paper explores the impact of context selection on the efficiency of Large Language Models (LLMs) in generating Artificial Intelligence (AI) research leaderboards, a task defined as the extraction of (Task, Dataset, Metric, Score) quadruples from scholarly articles. By framing this challenge as a text generation objective and employing instruction finetuning with the FLAN-T5 collection, we introduce a novel method that surpasses traditional Natural Language Inference (NLI) approaches in adapting to new developments without a predefined taxonomy. Through experimentation with three distinct context types of varying selectivity and length, our study demonstrates the importance of effective context selection in enhancing LLM accuracy and reducing hallucinations, providing a new pathway for the reliable and efficient generation of AI leaderboards. This contribution not only advances the state of the art in leaderboard generation but also sheds light on strategies to mitigate common challenges in LLM-based information extraction.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 150-160
- Anzahl der Seiten
- 11
- Publikationsdatum
- 20.09.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Theoretische Informatik, Allgemeine Computerwissenschaft
- Elektronische Version(en)
-
https://doi.org/10.1007/978-3-031-70242-6_15 (Zugang:
Geschlossen)