Exact wave-optical imaging of a Kerr-de Sitter black hole using Heun's equation

verfasst von
Felix Willenborg, Dennis Philipp, Claus Lämmerzahl
Abstract

Spacetime perturbations due to scalar, vector, and tensor fields on a fixed background geometry can be described in the framework of Teukolsky's equation. In this work, wave scattering is treated analytically, using the Green's function method and solutions to the separated radial and angular differential equations in combination with a partial wave technique for a scalar and monochromatic perturbation. The results are applied to analytically describe wave-optical imaging via Kirchhoff-Fresnel diffraction, leading to, e.g., the formation of observable black hole shadows. A comparison to the ray-optical description is given, providing new insights into wave-optical effects and properties. On a Kerr-de Sitter spacetime, the cosmological constant changes the singularity structure of the Teukolsky equation and allows for an analytical, exact solution via a transformation into Heun's differential equation, which is the most general, second-order differential equation with four regular singularities. The scattering of waves originating from a point source involves a solution in terms of the so-called Heun's function Hf. It is used to find angular solutions that form a complete set of orthonormal functions similar to the spherical harmonics. Our approach allows to solve the scattering problem while taking into account the complex interplay of Heun's functions around local singularities.

Externe Organisation(en)
Universität Bremen
Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation (ZARM)
Typ
Artikel
Journal
Physical Review D
Band
109
ISSN
2470-0010
Publikationsdatum
15.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2310.12917 (Zugang: Offen)
https://doi.org/10.1103/PhysRevD.109.044056 (Zugang: Geschlossen)