Integral modular data and congruences

verfasst von
Michael Cuntz
Abstract

We compute all fusion algebras with symmetric rational S-matrix up to dimension 12. Only two of them may be used as S-matrices in a modular datum: the S-matrices of the quantum doubles of ℤ/2ℤ and S 3. Almost all of them satisfy a certain congruence which has some interesting implications, for example for their degrees. We also give explicitly an infinite sequence of modular data with rational S- and T-matrices which are neither tensor products of smaller modular data nor S-matrices of quantum doubles of finite groups. For some sequences of finite groups (certain subdirect products of S 3,D 4,Q 8,S 4), we prove the rationality of the S-matrices of their quantum doubles.

Externe Organisation(en)
Technische Universität Kaiserslautern
Typ
Artikel
Journal
Journal of algebraic combinatorics
Band
29
Seiten
357-387
Anzahl der Seiten
31
ISSN
0925-9899
Publikationsdatum
01.05.2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie, Diskrete Mathematik und Kombinatorik
Elektronische Version(en)
https://doi.org/10.1007/s10801-008-0139-y (Zugang: Offen)