A reproducing kernel particle method (RKPM) algorithm for solving the tropical Pacific Ocean model

verfasst von
Mostafa Abbaszadeh, Maryam Parvizi, Amirreza Khodadadian, Thomas Wick, Mehdi Dehghan
Abstract

Meshless methods have become increasingly popular for solving a wide range of problems in both solid and fluid mechanics. In this study, we focus on a meshless numerical approach to solve the tropical Pacific Ocean model, which captures the horizontal velocity and layer thickness of ocean waves, using an advanced meshless Galerkin technique known as the reproducing kernel particle method (RKPM). To address the temporal component in this scheme, we apply a Crank-Nicolson finite difference method, resulting in a semi-discrete formulation. For spatial discretization, we use a kernel-based meshless Galerkin method that integrates the strengths of finite element methods with reproducing kernel particle approximations. We conduct a comprehensive stability analysis and provide an a priori estimate for the semi-discrete solution. Furthermore, we derive error estimates for both the semi-discrete and fully discrete solutions. Finally, we validate the theoretical findings and evaluate the method's efficiency through real-world test cases.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Amirkabir University of Technology
University of Birmingham
Keele University
Technische Universität Wien (TUW)
Typ
Artikel
Journal
Computers and Mathematics with Applications
Band
179
Seiten
197-211
Anzahl der Seiten
15
ISSN
0898-1221
Publikationsdatum
01.02.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Modellierung und Simulation, Theoretische Informatik und Mathematik, Computational Mathematics
Elektronische Version(en)
https://doi.org/10.1016/j.camwa.2024.12.011 (Zugang: Geschlossen)