Separation axioms for interval topologies

verfasst von
Marcel ErnÉ
Abstract

In Theorem 1 of this note, results of Kogan [2], Kolibiar [3], Matsushima [4] and Wölk [7] concerning interval topologies are presented under a common point of view, and further characterizations of the T2 axiom are obtained. A sufficient order-theoretical condition for regularity of interval topologies is established in Theorem 2. In lattices, this condition turns out to be equivalent both to the T2 and to the T3 axiom. Hence, a Hausdorf f interval topology of a lattice is already regular. However, an example of a poset is given where the interval topology is T2 but not T3.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Proceedings of the American Mathematical Society
Band
79
Seiten
185-190
Anzahl der Seiten
6
ISSN
0002-9939
Publikationsdatum
06.1980
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1090/S0002-9939-1980-0565335-8 (Zugang: Offen)