Separation axioms for interval topologies
- verfasst von
- Marcel ErnÉ
- Abstract
In Theorem 1 of this note, results of Kogan [2], Kolibiar [3], Matsushima [4] and Wölk [7] concerning interval topologies are presented under a common point of view, and further characterizations of the T2 axiom are obtained. A sufficient order-theoretical condition for regularity of interval topologies is established in Theorem 2. In lattices, this condition turns out to be equivalent both to the T2 and to the T3 axiom. Hence, a Hausdorf f interval topology of a lattice is already regular. However, an example of a poset is given where the interval topology is T2 but not T3.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Proceedings of the American Mathematical Society
- Band
- 79
- Seiten
- 185-190
- Anzahl der Seiten
- 6
- ISSN
- 0002-9939
- Publikationsdatum
- 06.1980
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1090/S0002-9939-1980-0565335-8 (Zugang:
Offen)