Data Augmentation for Supervised Code Translation Learning

verfasst von
Binger Chen, Jacek Golebiowski, Ziawasch Abedjan
Abstract

Data-driven program translation has been recently the focus of several lines of research. A common and robust strategy is supervised learning. However, there is typically a lack of parallel training data, i.e., pairs of code snippets in the source and target language. While many data augmentation techniques exist in the domain of natural language processing, they cannot be easily adapted to tackle code translation due to the unique restrictions of programming languages. In this paper, we develop a novel rule-based augmentation approach tailored for code translation data, and a novel retrieval-based approach that combines code samples from unorganized big code repositories to obtain new training data. Both approaches are language-independent. We perform an extensive empirical evaluation on existing Java-C#-benchmarks showing that our method improves the accuracy of state-of-the-art supervised translation techniques by up to 35%.

Organisationseinheit(en)
Fachgebiet Datenbanken und Informationssysteme
Forschungszentrum L3S
Externe Organisation(en)
Technische Universität Berlin
Amazon.com, Inc.
Typ
Aufsatz in Konferenzband
Seiten
444-456
Anzahl der Seiten
13
Publikationsdatum
02.07.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Angewandte Informatik, Software, Sicherheit, Risiko, Zuverlässigkeit und Qualität
Elektronische Version(en)
https://doi.org/10.1145/3643991.3644923 (Zugang: Offen)