An Automated Monitoring System for Controlled Greenhouse Horticulture

verfasst von
Matthias Becker, Kinwoon Yeow
Abstract

In the field of controlled horticulture, various methods have been studied to facilitate the environmental data retrieval. One of the great findings in this research is the attraction of insect’s behaviour towards the LED lighting of various wavelengths. Previous research shows promising results using LED based insect traps for insect population estimation in greenhouses. Therefore, an automated monitoring system is proposed as a standardization tool for environmental data gathering and estimation of pest population in controlled horticulture settings. The proposed automated monitoring system integrates object recognition models (combination of YOLOv3 and SVM) that identify and classify the pest and beneficial population density. The proposed system provides informative output via a mobile application. As a result, the proposed system functions as an integrated IoT management tool that simplifies the information retrieval process.

Organisationseinheit(en)
Fachgebiet Mensch-Computer-Interaktion
Typ
Aufsatz in Konferenzband
Seiten
75-85
Anzahl der Seiten
11
Publikationsdatum
07.02.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Entscheidungswissenschaften, Allgemeine Computerwissenschaft
Elektronische Version(en)
https://doi.org/10.1007/978-981-97-7419-7_7 (Zugang: Geschlossen)