hp-FEM for the α-Mosolov problem
a priori and a posteriori error estimates
- verfasst von
- Lothar Banz, Ernst P. Stephan
- Abstract
An hp-finite element discretization for the α-Mosolov problem, a scalar variant of the Bingham flow problem but with the α-Laplacian operator, is being analyzed. Its weak formulation is either a variational inequality of second kind or equivalently a non-smooth but convex minimization problem. For any α∈(1,∞) we prove convergence, including guaranteed convergence rates in the mesh size h and polynomial degree p of the FE-solution of the corresponding discrete variational inequality. Moreover, we derive two families of reliable a posteriori error estimators which are applicable to any “approximation” of the exact solution and not only to the FE-solution and can therefore be coupled with an iterative solver. We prove that any quasi-minimizer of those families of a posteriori error estimators satisfies an efficiency estimate. All our results contain known results for the Mosolov problem by setting α=2. Numerical results underline our theoretical findings.
- Organisationseinheit(en)
-
Institut für Angewandte Mathematik
- Externe Organisation(en)
-
Universität Salzburg
- Typ
- Artikel
- Journal
- Numerische Mathematik
- Band
- 156
- Seiten
- 1679-1718
- Anzahl der Seiten
- 40
- ISSN
- 0029-599X
- Publikationsdatum
- 10.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Computational Mathematics, Angewandte Mathematik
- Elektronische Version(en)
-
https://doi.org/10.1007/s00211-024-01433-8 (Zugang:
Offen)