hp-FEM for the α-Mosolov problem

a priori and a posteriori error estimates

verfasst von
Lothar Banz, Ernst P. Stephan
Abstract

An hp-finite element discretization for the α-Mosolov problem, a scalar variant of the Bingham flow problem but with the α-Laplacian operator, is being analyzed. Its weak formulation is either a variational inequality of second kind or equivalently a non-smooth but convex minimization problem. For any α∈(1,∞) we prove convergence, including guaranteed convergence rates in the mesh size h and polynomial degree p of the FE-solution of the corresponding discrete variational inequality. Moreover, we derive two families of reliable a posteriori error estimators which are applicable to any “approximation” of the exact solution and not only to the FE-solution and can therefore be coupled with an iterative solver. We prove that any quasi-minimizer of those families of a posteriori error estimators satisfies an efficiency estimate. All our results contain known results for the Mosolov problem by setting α=2. Numerical results underline our theoretical findings.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Universität Salzburg
Typ
Artikel
Journal
Numerische Mathematik
Band
156
Seiten
1679-1718
Anzahl der Seiten
40
ISSN
0029-599X
Publikationsdatum
10.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computational Mathematics, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00211-024-01433-8 (Zugang: Offen)