Time-delay interferometric ranging for LISA

statistical analysis of bias-free ranging using laser noise minimization

verfasst von
Martin Benedikt Staab
betreut von
Gerhard Heinzel
Abstract

Die Laser Interferometer Space Antenna (LISA) ist eine Mission der europäischen Weltraumagentur (ESA) zur Detektion von Gravitationswellen im Frequenzbereich zwischen 10^-4 Hz und 1 Hz. Gravitationswellen induzieren relative Abstandsänderungen, die LISA mithilfe von Laserinterferometrie mit Picometerpräzision misst. Ein großes Problem hierbei ist das Frequenzrauschen der Laser. Um dieses zu unterdrücken, ist es notwendig, mithilfe eines Algorithmus namens TDI (engl. time-delay interferometry), virtuelle Interferometer mit gleichlangen Armen zu konstruieren, wie z.B. das klassische Michelson-Interferometer. In dieser Arbeit untersuchen wir die Performanz von TDI unter realistischen Bedingungen und identifizieren verschiedene Kopplungsmechanismen des Laserfrequenzrauschens. Als erstes betrachten wir die Datenverarbeitung an Bord der Satelliten, die benötigt wird, um die Abtastrate der interferometrischen Messungen zu reduzieren. Hierfür sind Anti-Alias-Filter vorgesehen, die der Faltung von Laserrauschleistung in das Beobachtungsband vorbeugen. Außerdem wirkt sich die Ebenheit der Filter auf die Effektivität von TDI aus (engl. flexing-filtering-effect). Dieser Effekt ist bereits in der Literatur beschrieben und wir demonstrieren in dieser Arbeit die Möglichkeit, ihn mithilfe von Kompensationsfiltern effektiv zu reduzieren. Als zweites betrachten wir Kopplungsmechanismen von Laserfrequenzrauschen im TDI-Algorithmus selbst. Fehler in der Interpolation der interferometrischen Messungen und Ungenauigkeiten in den absoluten Abstandsmessungen zwischen den Satelliten führen ebenfalls zu einer unzureichenden Reduzierung des Laserfrequenzrauschens. Wir beschreiben die oben genannten Kopplungsmechanismen analytisch und validieren die zugrundeliegenden Modelle mithilfe von numerischen Simulationen. Das tiefere Verständnis dieser Residuen ermöglicht es uns, geeignete instrumentelle Parameter zu wählen, die von hoher Relevanz für das Missionsdesign von LISA sind. Des Weiteren beschäftigen wir uns in dieser Arbeit mit der möglichst genauen Bestimmung der absoluten Abständen zwischen den Satelliten, die für den TDI Algorithmus erforderlich sind. Hierfür werden die Abstandsinformationen aus den Seitenbändern und der PRN-Modulation (engl. pseudo-random noise) kombiniert. Wir zeigen, dass die PRN-Messung von systematischen Verzerrungen betroffen ist, die zu Laserrauschresiduen in den TDI-Variablen führen. Um diesen Fehler zu korrigieren, schlagen wir als zusätzliche Abstandsmessung TDI-Ranging (TDI-R) vor. TDI-R ist zwar ungenauer, aber frei von systematischen Verzerrungen und kann daher zur Kalibrierung der PRN-Messungen herangezogen werden. Wir präsentieren in dieser Arbeit eine ausführliche statistische Studie, um die Performanz von TDI-R zu charakterisieren. Dafür formulieren wir die Likelihood-Funktion der interferometrischen Messungen und berechnen die Fisher-Informationsmatrix, um die theoretisch mögliche untere Grenze der Schätzvarianz zu finden. Diese verhält sich invers proportional zur Integrationszeit und dem Verhältnis von Sekundärrauschleistung, die die interferometrische Messung fundamental limitiert, und Laserrauschleistung. Zusätzlich validieren wir die analytische untere Grenze der Schätzvarianz mithilfe von numerischen Simulationen und zeigen damit, dass unsere Implementierung von TDI-R optimal ist. Der entwickelte TDI-R-Algorithmus wird Teil der Datenverarbeitungspipeline sein und Konsistenzprüfungen und Kalibrierung der primären Abstandsmessmethoden ermöglichen.

Organisationseinheit(en)
Institut für Gravitationsphysik
QUEST Leibniz Forschungsschule
Typ
Dissertation
Anzahl der Seiten
112
Publikationsdatum
2023
Publikationsstatus
Veröffentlicht
Elektronische Version(en)
https://doi.org/10.15488/15739 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“